

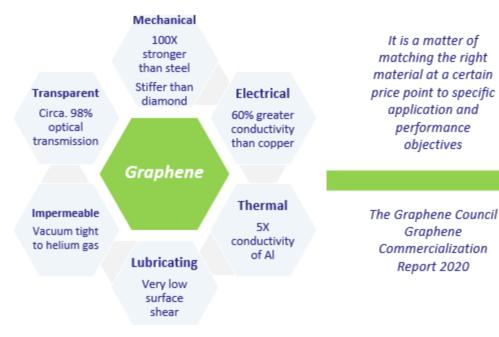
Graphene Dispersions for Composites

10

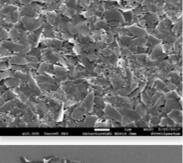
A DECADE OF INNOVATION

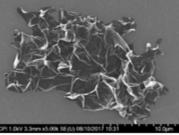
2020

2010

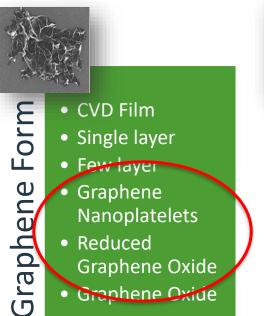

Adrian Potts

adrian.potts@appliedgraphenematerials.com +1 (918) 344 8564


appliedgraphenematerials.com © Applied Graphene Materials plc

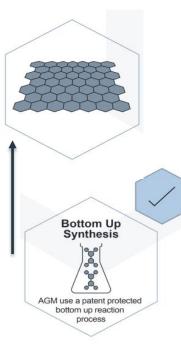

Graphene – Fundamentals

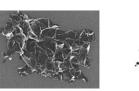
Single layer Graphene


Graphene nanoplatelets

AGM – Enabling customers to succeed

Material Selection. Delivery mechanism. Ambition for performance.




What we do - Synthetic Graphene Nanoplatelets

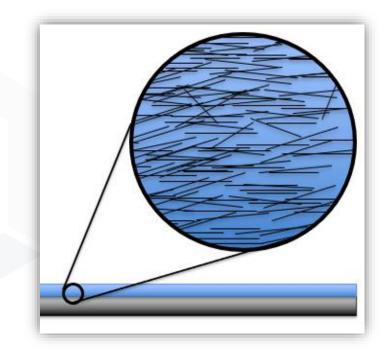
AGM - Differentiated synthetic GNP manufacturing.

- GNPs can be produced by molecular growth from small molecular carbon precursors
- Control Number of layers
- Attributes Surface area and high C content
- Process Reliable, scalable method
- IP Patented, know how, trade secrets and application experience

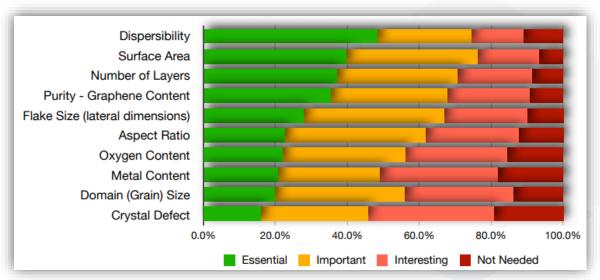
Output - Useful powder additive to a range of applications

Standard Dispersions:

 Distribution conduit with Standard products


Customized Dispersions:

- Customer-specific dispersions to suit application
- Range of host materials which AGM has successfully dispersed GNP into
- Around 200 customized dispersions for customer development trials in the past 2 years.


What's Important?

Principles to realise performance gains

- Why use high aspect ratio platy materials?
 - Use the aspect ratio to impart properties to:-
 - Matrix
 - Potential Mechanical uplift
 - Interfaces
 - Improve interface strength
 - Inter-plies
 - Improve interlaminar
 - Coatings
 - Barrier / Moisture pickup
 - Conductivity
 - Thermal
 - Electrical
 - High degree of platelet separation needed for success

What we do - Synthetic Graphene Nanoplatelets

Deploying Graphene Nanoplatelets

Courtesy The Graphene Council 4 Jan 2021 Survey on attribute importance

Industry need

- Dispersibility key attribute
- Quality of platelets

AGM's focus

- Ability to realize the potential of GNPs in real applications
- Overcome the industry challenge of successful graphene dispersion

What's Important?

Principles

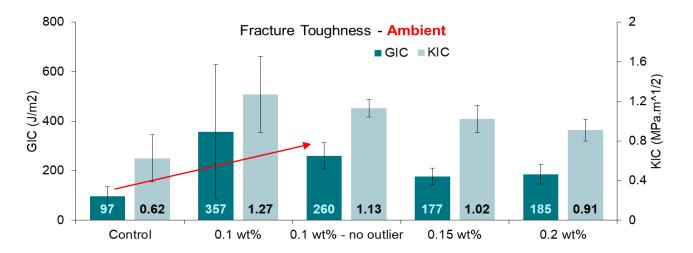
- How to get graphene into materials effectively?
- Particle size
 - Important for mechanicals through to other functionalities
- Aspect ratio
 - Is the process exfoliating further?
- Surface area
 - Adhesion to matrix through to absorption characteristics
- Loading level
 - GNP's very efficient when used in the correct way
- Compatibility
 - Chemistry of target product

Q

Dispersion and process to arrive at "a fit for purpose solution" is critical

Composites / Graphene Background

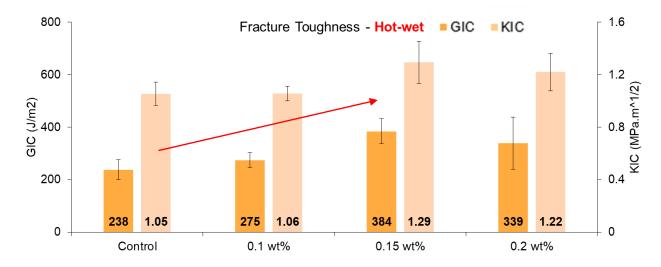
Initial Technical Performance Approach


Add graphene platelets to matrix resin

- Basis graphene has strength potential and low density. Also stiffness potential.
- Chemistry If it can bond well to matrix, maybe greater load transfer possible
- Fracture Mechanics Nano materials present to act as crack stopper/deflector to aid toughness and durability

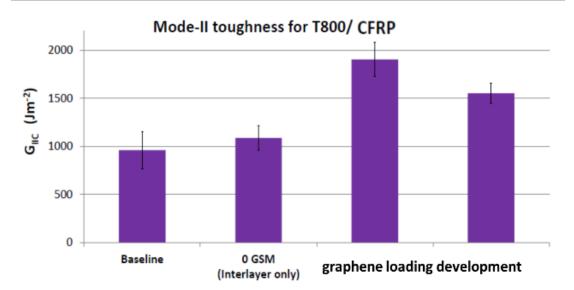
Objective to enhance all round performance for matrix-dominated properties

- Fracture Toughness
- ILSS
- Through-thickness performance
- Transverse tensile
- Shear performance
- Worry less about fiber-dominated properties unlikely to influence


Fracture Toughness – Ambient

Ambient										
ID	Sample	G _{IC} (J/m²)	95C	% change	K _{IC} (MPa∙m¹/²)	95C	% change			
S1647	Control	96.75	38.61	n.a.	0.62	0.24	n.a			
S1648	0.10 wt%	357.11	270.93	269.11	1.27	0.39	103.16			
S1648	0.10 wt% no outlier	260.00	53.00	168.74	1.13	0.09	80.84			
S1649	0.15 wt%	176.77	33.87	82.71	1.02	0.14	63.37			
S1650	0.20 wt%	185.10	39.21	91.32	0.91	0.11	45.79			

Fracture Toughness – Hot-Wet



Hot-wet										
ID	Sample	G _{IC} (J/m²)	95C	% change	K _{IC} (MPa∙m¹/²)	95C	% change			
S1651	Control	237.84	38.05	n.a.	1.05	0.09	n.a.			
S1652	0.10 wt%	274.62	28.45	15.47	1.06	0.06	0.28			
S1653	0.15 wt%	384.10	48.17	61.50	1.29	0.16	22.82			
S1654	0.20 wt%	338.58	99.13	42.36	1.22	0.14	15.76			

GIIC and LSS

Further toughening development with customers

Lap shear Properties

 Increase of +25% in lap shear strength and +40% in lap shear modulus with low loading levels of Genable[®] Dispersion

Graphene nanoplatelets for lighter, stronger, cost effective composites for space

Customer Case Study

CHALLENGE

- Linerless composite tanks the holy grail of gas storage for space applications
 - Increase Performance
 - Reduce Weight
 - Reduce Cost
 - Reduce Lead time
- Potential launch vehicles and satellite applications with ultralightweight storage tanks
- NASA programs such as Artemis and Lunar Gateway
- Next generation cryogenic pressure tanks a key technology to enable USA to maintain space superiority

Customer Case Study – Tow winding

Graphene nanoplatelets for lighter, stronger, cost effective composites for space

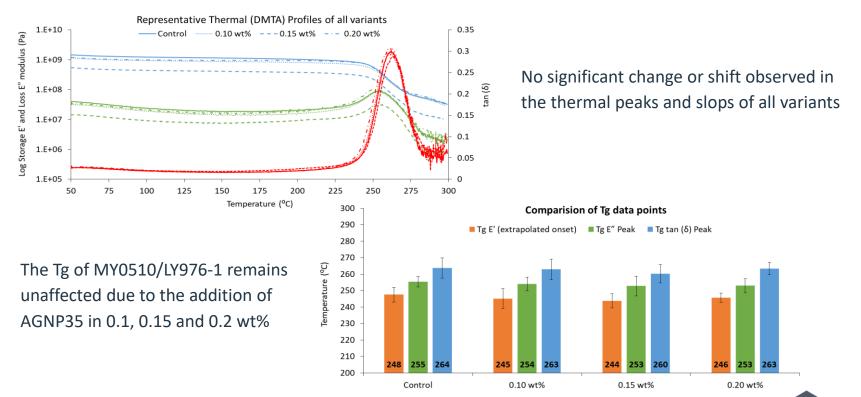
SOLUTION THROUGH MATERIALS ENGINEERING

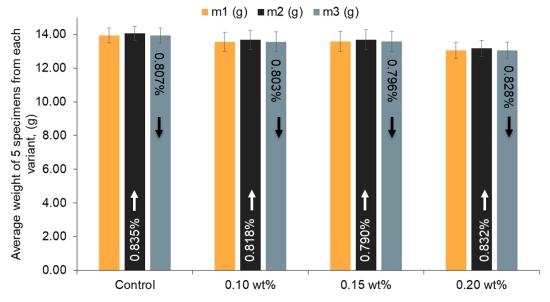
Liner removed through a combination of materials engineering with GNP's, manufacturing process and assembly design.

AGM GNP custom dispersions integrated into linerless composite matrix of pressurized tanks

- Enables tanks to be taken to higher pressures 5000psi gas storage capable
- Simulated 20 years life composite gets stronger over the pressure cycles with GNP addition
- Mass reduced 40%
- Cost reduced 50%
- Lead time reduced 80%

Potential for Space, Aviation, Transportation and Industrial




Tg effect

Moisture Uptake

m1: weight after initial drying, m2: weight after immersion (hot-wet), m3: weight after final drying

- MY0510/LY976-1 or its AGNP35 modified variants do not absorb significant quantity of moisture during hot-wet conditioning (0.77% to 0.83%).
- The initial and final drying resulted in a similar transfer of moisture in-and-out of the system.

Customer Case Study – MTC9810 Prepreg from SHD

Genable[®] **1000** resin dispersion with SHD Prepreg to achieve an enhanced fracture toughness prepreg system

Key Features & Benefits

- Excellent mechanical properties
- Very high fracture toughness
- Cure temperature from 90°C to 120°C
- Service temperature up to 110°C after post cure
- Low CTE and shrinkage
- Work life at 20°C: 60 days
- Storage life at -18°C: 12 months
- Very low VOC content no added solvents during manufacture
- Excellent surface finish
- Honeycomb bondable

Good utility as enhanced performance prepreg material coatable on a wide range of fibers

Graphene enhanced prepreg used by W Motors

Successful Collaboration with Century Fishing Rods

SOLUTION THROUGH MATERIALS ENGINEERING

Century designed, tested and fully evaluated a range of next generation, graphene reinforced high performance fishing rods.

The **Century GT1000** rod was followed by extensive, and near destructive, field testing against large and powerful pelagic fish off the Ascension Islands.

Rods demonstrated clear performance benefits:

- Significantly reduced micro-crack development & propagation caused by the extended periods of laminate extension and compression
- Enhanced interlaminar strength performance
- Reduced surface degradation under harsh environmental conditioning, and
- Retention of all other laminate properties

Customer Case Study – Automotive body panel systems

- Scope:- Work with major automotive Tier 1
- *"We can see positive directional improvements in key mechanical properties of composites systems. Encouragingly, other mechanicals investigated did not show significant change as compared to baseline numbers"*
- Areas of substantial performance gain include:-
 - Tensile Strength and Modulus improvements
 - Flexural Strength and Modulus improvements
 - Impact performance improvements
- Alignment to trends in vehicle technology:-
- Potential to design out mass for light weighting through increased mechanical performance with graphene in a range of composites materials
- Chassis and body panels with range of composites process solutions

Composites application technology

1100 1000 900 800 700 J/m² 600 500 **G1**_C 400 300 200 100

0.8

Control

*ISO15024:2001

Influence of drop spacing on interlaminar fracture toughness ■ NL Point ■ Cmax ■ Mean/Median Propagation

Drop Spacing (mm)

- Printed large platelet graphene for composites •
- Formulated Structural Ink[™] Graphene Ink printed onto composite materials
- Fracture toughness improvements in continuous fiber composites:-•
- Matrix resin alone + 170% •

Printing graphene into composite layups

- + 130% and printing only where needed Composite
- Other multifunctional possibilities with this technology

1.2

1.4

Possible options

Graphene Nanoplatelet Potential

- Objectives understanding
- Prepreg
- Resin for VRI or RTM
- Dispersions to suit application
- Printing
- Use of other graphenes or nano's in our dispersions
- Sizing

Summary

Graphene Nanoplatelet Potential

- Mechanical performance gains achievable
- Matrix dominated properties main area so far for improvement
- Possibilities for multi-functional benefits
 - Barrier / Moisture Uptake
 - Conductivity

- Selection of type of materials is important just as you would with other elements of a composite
- Deployment method is key. Superior distribution of platelets to achieve performance ambitions