Towards A Novel, Non-Metal Graphene Nanoplatelet Hybrid Anti-Corrosive System for Tomorrow’s Protective Coatings

Lynn Chikosha, Matthew Sharp, William Weaver

19 March 2019
Introduction
Graphene’s two-dimensional structure in the nanoplatelet form results in materials with:

• very high aspect ratio
• high surface area

These materials are particularly suited for use as multi-functional additives in paints and coatings.

The proposed mechanism by which graphene delivers anti-corrosion performance is a combination of physico-chemical process restricting uptake of water (combined with oxygen and salt) and electro-chemical activity.
AGM Graphene Nano Platelets

Reduced Graphene Oxide

- Composed of mixture of nanoplatelet type sheets
- Excellent barrier properties
- Moderate density and surface area gives high loading levels in most matrices
- Typically 10% in dispersion for further dilution in final formulation

Graphene

- Very thin, crumpled sheets. (of 5-15 atomic layers)
- Very low density and high surface area, enabling enhanced corrosion
- Typical loading levels 0.5-1% by weight in dispersion for further dilution in final formulation

AGM supplies its graphenes in dispersion format
Objectives

1. Can graphene give significant uplifts corrosion resistance when applied direct to substrates in C4 / C5 environments?

2. Can performance of zinc rich systems be further extended by using graphene enhanced tiecoat layer?
 • Combining the sacrificial protection of a zinc rich primer with the excellent barrier properties of a graphene coating
Experimental
Previous Developments

• Previously, AGM has developed and reported meaningful anti-corrosive performance gains in epoxy coatings for C3 (ISO12944) environments, against zinc phosphate systems, using a hybrid primer solution incorporating graphene nanoplatelets.

• Performance on ASTM G85 prohesion test was extended from 1000 to 5000 hours by using graphene in combination with metal free active inhibitors.
Test Program

Demonstrate performance in a C4 / C5 environment
• Preliminary investigations carried out using Neutral Salt Spray (ISO 9227)
• Electrochemical studies carried out to aid further understanding of mechanism of protection

Systems tested
• Single layer of primer applied direct to substrate at 50-60 microns
• Three layer systems
 • Zinc rich primer direct to substrate
 • Graphene systems (and control) in intermediate layer as a tiecoat
 • Polyurethane topcoat

Not included
• Condensation testing
• Cycling ageing test
Electrochemical Testing

EIS

- Combined NSS/EIS Test Method
- Measurements recorded using a Gamry 1000E potentiostat in conjunction with a Gamry ECM8 multiplexer
- The test area of the working electrode was 14.6 cm\(^2\) and run using a 3.5 wt% NaCl electrolyte
- An AC voltage of 10 mV was applied across the samples, with a zero volt DC bias, over a frequency range of 1 MHz to 0.05 Hz
- Samples initially tested before being placed under NSS (T=0) and then retrieved from NSS every 10 days for subsequent testing
Formulations

<table>
<thead>
<tr>
<th>Component</th>
<th>Control</th>
<th>D1: Reduced Graphene Oxide Dispersion</th>
<th>D2: Graphene Dispersion</th>
<th>D3: Hybrid Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy (EEW 190 g/eq)</td>
<td>15.119</td>
<td>15.119</td>
<td>15.119</td>
<td>15.119</td>
</tr>
<tr>
<td>Amino Resin</td>
<td>0.244</td>
<td>0.244</td>
<td>0.244</td>
<td>0.244</td>
</tr>
<tr>
<td>Dispersant</td>
<td>0.402</td>
<td>0.402</td>
<td>0.402</td>
<td>0.402</td>
</tr>
<tr>
<td>Xylene</td>
<td>15.376</td>
<td>15.376</td>
<td>15.376</td>
<td>15.376</td>
</tr>
<tr>
<td>Bentonite thixotrope</td>
<td>0.366</td>
<td>0.366</td>
<td>0.366</td>
<td>0.366</td>
</tr>
<tr>
<td>Butanol</td>
<td>1.986</td>
<td>1.986</td>
<td>1.986</td>
<td>1.986</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>10.966</td>
<td>10.966</td>
<td>10.966</td>
<td>10.966</td>
</tr>
<tr>
<td>Blanc Fixe</td>
<td>43.619</td>
<td>43.619</td>
<td>43.619</td>
<td>43.619</td>
</tr>
<tr>
<td>Epoxy (EEW 190 g/eq)</td>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GNP dispersion</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Polyamine hardener</td>
<td>1.922</td>
<td>1.922</td>
<td>1.922</td>
<td>1.922</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>GNP loading %</td>
<td>0</td>
<td>1</td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Panel Preparation

- Steel panels of dimensions 150 x 100 x 2mm, grit blasted to SA2.5
- Coatings were applied using a conventional spray gun.
 - Single coat systems at 50µm DFT
 - Multi-coat systems at 150 -160µm DFT
- For multi-coat samples the over-coating interval used was 3 hours
- All panels were allowed to cure for a period of 7 days at 23°C (+/- 2°C).
Results
Single Layer – Direct to Substrate

- After 720 hours on Neutral Salt Spray
 - Minimal creep at the scribe
 - Coatings D2 and D3 showed significantly less corrosion across the panel face
 - Formulation D1 was not much better than the control.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Corrosion</th>
<th>Creep (mm)</th>
<th>Blistering</th>
<th>Adhesion to substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy Prototype (No GNP)</td>
<td>Excessive corrosion</td>
<td>3</td>
<td>-</td>
<td>Good</td>
</tr>
<tr>
<td>D1: Graphene Oxide Dispersion</td>
<td>Heavily corroded</td>
<td>1</td>
<td>-</td>
<td>Good</td>
</tr>
<tr>
<td>D2: Graphene Dispersion</td>
<td>Mild corrosion</td>
<td>1</td>
<td>1s1</td>
<td>Good</td>
</tr>
<tr>
<td>D3: Hybrid Dispersion</td>
<td>Mild corrosion</td>
<td>1</td>
<td>1s1</td>
<td>Good</td>
</tr>
</tbody>
</table>

www.appliedgraphenematerials.com
Single Layer – Direct to Substrate

- After 1440 hours on Neutral Salt Spray
 - Minimal creep at the scribe
 - Coatings D2 and D3 showed significantly less corrosion across the panel face
 - Formulation D1 was not much better than the control.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Corrosion</th>
<th>Creep (mm)</th>
<th>Blistering</th>
<th>Adhesion to substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epoxy Prototype (No GNP)</td>
<td>Excessive</td>
<td>10</td>
<td>-</td>
<td>Good</td>
</tr>
<tr>
<td>D1: Graphene Oxide Dispersion</td>
<td>Excessive</td>
<td>7</td>
<td>-</td>
<td>Good</td>
</tr>
<tr>
<td>D2: Graphene Dispersion</td>
<td>Mild</td>
<td>3</td>
<td>1s1</td>
<td>Good</td>
</tr>
<tr>
<td>D3: Hybrid Dispersion</td>
<td>Mild</td>
<td>3</td>
<td>1s1</td>
<td>Good</td>
</tr>
</tbody>
</table>
Impedance measurements carried out at 10 day intervals.

Graphene enhanced primers showed impedance levels higher than the graphene-free control.

After 1440 hours, highest impedance levels were achieved with Coating D2.
Discussion

• After 1440 hours of neutral salt spray testing, D2 and D3 showed significantly better corrosion resistance compared to the graphene-free control system on neutral salt spray.

• Both D2 and D3 showed significantly higher levels of impedance on EIS testing over the 1440 hour period.

• It has previously been demonstrated that graphene significantly reduces water vapour transmission rates. This potentially explains the delay in onset of corrosion and the higher impedance values observed.
Graphene Enhanced Tiecoat

NSS Testing Results:
- Panels were assessed for blistering, creep and breakthrough corrosion at 240, 480, 720 and 1440 hours
- Electro-chemical assessments were also carried out at the above intervals

<table>
<thead>
<tr>
<th>1st Coat</th>
<th>2nd Coat</th>
<th>3rd Coat</th>
<th>Corrosion</th>
<th>Creep (mm)</th>
<th>Blistering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Rich Primer (Commercial)</td>
<td>Epoxy Prototype (No GNP)</td>
<td>Polyurethane Topcoat</td>
<td>No visible corrosion</td>
<td><1</td>
<td>None</td>
</tr>
<tr>
<td>Zinc Rich Primer (Commercial)</td>
<td>D1: Graphene Oxide Dispersion</td>
<td>Polyurethane Topcoat</td>
<td>No visible corrosion</td>
<td><1</td>
<td>None</td>
</tr>
<tr>
<td>Zinc Rich Primer (Commercial)</td>
<td>D2: Graphene Dispersion</td>
<td>Polyurethane Topcoat</td>
<td>No visible corrosion</td>
<td><1</td>
<td>None</td>
</tr>
<tr>
<td>Zinc Rich Primer (Commercial)</td>
<td>D3: Hybrid Dispersion</td>
<td>Polyurethane Topcoat</td>
<td>No visible corrosion</td>
<td><1</td>
<td>None</td>
</tr>
</tbody>
</table>
Graphene Enhanced Tiecoat

- Impedance measurements were carried out at 0, 72, 240, 480, 720 and 1440 hours.
- All three graphene enhanced primers showed higher impedance values than the graphene-free control.
- Coating D2 in the intermediate layer showed significantly higher impedance.
EIS response at the very beginning of exposure is dominated by a capacitive behaviour (phase shift close to -90 degrees)

Deviation from a purely capacitive behaviour may arise as water or corrosive species penetrates within the coating pores, developing ionic pathways, creating a resistive contribution (pore resistance) to the overall impedance of the system

Clear large deviations observed for the control sample compared to the ZRP/D2/PU sample indicates an enhanced barrier performance
Water Uptake – Three Layer Systems

- Water uptake measurements were extracted from the double capacitance data.
- Coatings with a graphene enhanced tiecoat showed a significant reduction in water uptake.
- Coating D2 had the lowest water uptake, which would infer the best barrier properties.
Graphene Enhanced Tiecoat

Discussion

• After 720 hours, the 3 coat systems show no signs of blistering or corrosion development.

• As expected, there is little evidence of creep development at the scribe. This can be attributed to the sacrificial mechanism of zinc rich primer direct to substrate.

• Furthermore, it’s expected that the barrier protection offered by the graphene enhanced tiecoat is expected to further extend coating lifetime.

• Particularly high impedance values were observed with the use of D2 as a tiecoat. This is likely an effect of the enhanced barrier properties in the tiecoat as demonstrated by the water uptake results.
Further Work

1. Further demonstration of performance in C4 / C5 environments:
 • Cyclic ageing test: which could also determine if graphene offers an improvement in thermal stability.
 • Condensation testing: will particularly demonstrate resistance to blistering.
 • Leaching: does the graphene restrict loss of zinc into the local environment?

2. Investigate the direct replacement of zinc rich coatings with graphene enhanced primers. Can a higher level of performance be achieved using a different mechanism of protection?

3. Investigate reduced zinc loadings
 • Reduced zinc in the first layer of a 3 coat system
 • Graphene enhanced zinc-rich formulations
Summary

- Graphene enhanced epoxy primers applied directly to metal substrates showed a significant improvement in anti-corrosive performance.
- Improvements seen in the single layers were consistent with the electro-chemical impedance values.
- Early evaluation of the three-layer systems showed excellent anti-corrosion performance as expected.
- D2 graphene-based coating showed exceptional performance on EIS and is expected to show extended system performance.
 - It is likely that the combination of the sacrificial zinc-rich layer and the barrier protection from the graphene-enhanced coatings gives extended coating durability and lifetime.
Graphene in products used by everybody, everyday

www.appliedgraphenematerials.com
info@appliedgraphenematerials.com

The Innovation Centre,
Wilton Site,
Redcar.
TS10 4RF
United Kingdom