Applied Graphene Materials launches Genable® thermal paste adhesives range

Applied Graphene Materials (AGM), the UK based manufacturer of commercial graphene enhanced dispersions, has announced the launch of two new high performance thermal paste adhesive materials - Genable® 4400 and Genable® 4300.

The new products are supplied to customers as easy to process two part epoxy systems in thermal management applications. They are designed for use either directly as a paste adhesive and gap filler, or as potential base additives to enhance other formulated systems.

The two products have been formulated to deliver different level of processing viscosity to suit specific application requirements and will provide in-situ thermal conductivity in the region of 3-6 W/mK, combined with good levels of lap shear strength.

AGM anticipates applications within formulations for bonding, potting, sealing and encapsulation for Space, Electronics and Automotive components.

For further information please contact AGM Sales Office on:
Tel: + 44(0)1642 438214
Email: info@appliedgraphenematerials.com

About Applied Graphene Materials

Applied Graphene Materials works in partnership with their customers using its knowledge and expertise to provide custom graphene dispersions and formats to deliver enhancements and benefits for a wide range of applications. The Group's strategy is to target commercial application in three core markets: coatings, composites and polymers and functional fluids.

The Group has developed proprietary bottom-up processes which are capable of producing high volume graphene nanoplatelets using a continuous process. The manufacturing processes are based on sustainable, readily available raw materials and therefore do not rely on the supply of graphite, unlike a number of other graphene production techniques. Applied Graphene Materials owns the intellectual property and know-how behind these processes.

Applied Graphene Materials was founded by Professor Karl Coleman in 2010 with its operations and processes based on technology that he initially developed at Durham University. The Group was admitted to AIM in November 2013.