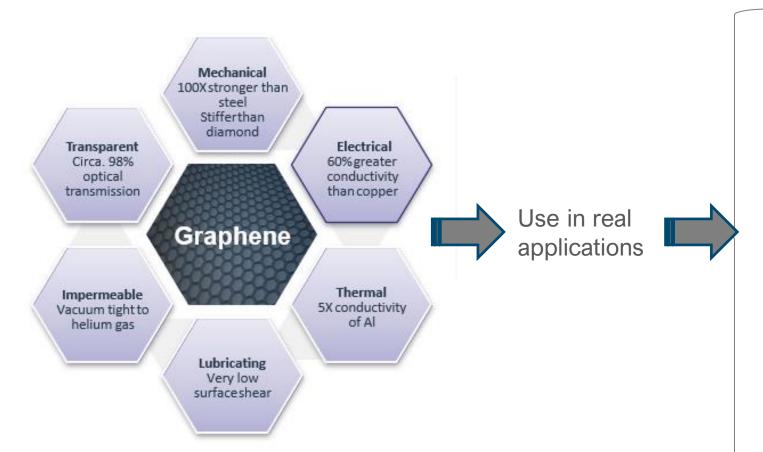


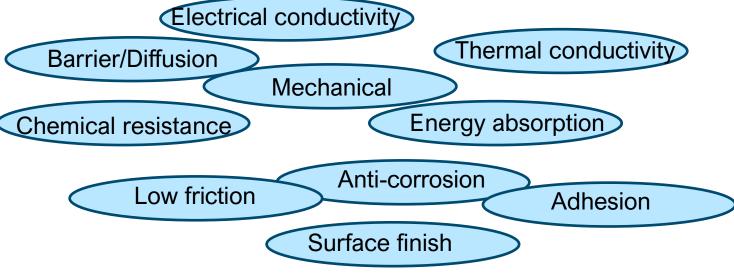
The Need For Dispersion and the Science Behind It

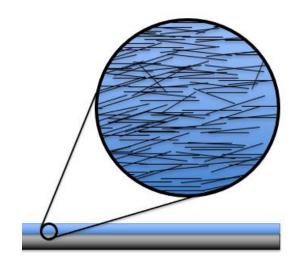
Adrian Potts CEO, Applied Graphene Materials plc


GRAPHENE NANOPLATELETS

- AGM A-GNP's
- Number of layers can be controlled using different substrate catalysts and growing/reaction parameters
- Gives large surface area and high purity
- Offers a solid approach for consistent batch to batch high quality Graphene

GRAPHENE ATTRIBUTES


AGM Application Technology


- Commercial value of graphene lies in the ability to robustly transfer its intrinsic properties into other materials
- To create higher value materials and products which possess specifically enhanced characteristics
- AGM utilizes differentiated application technology to create both standardized and end-use specific customized solutions for a range of applications

REALIZING PERFORMANCE

What is the performance objective?

- Coatings
- Composites
- TIM's
- Adhesives
- Printing
- Common thread A need for separated array of high aspect ratio nanoplatelets
 - Organized
 - Random

REALIZING PERFORMANCE

- Challenges with nanoplatelets
 - Going straight in with powders.....
 - Risks Agglomeration
 - Risks Crashing out of formulation
 - Risks Incompatibilities with emulsions
 - Risks related to safe use of HARN powders
- Dispersions for nanoplatelets
 - Key enabler to deliver materials
- Standard products
 - Liquid resins
 - Water
 - Solvents
 - Range of graphenes
- Custom dispersions

REALIZING PERFORMANCE

- Typical matrix types using graphene for composites and coatings
- Epoxies
- PUs
- Toughened systems
- BMIs
- Cyanate Esters
- PFAs
- FST prepreg matrix resins
- Vinyl Esters for pultrusion and SMC
- Range of solvents
- Water

Liquid matrix technology lends itself well to dispersing graphenes

Why Graphene?

What could Graphene do for product enhancement?

What form of graphene might work?

What am I hoping to achieve?

How?

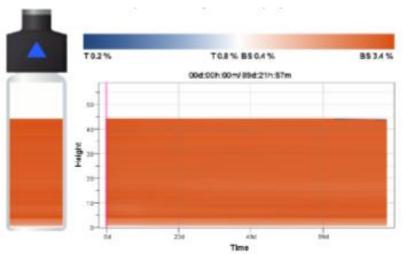
How could I best format the material I'm trying to use to add performance?

How could I best introduce graphene?

How can I avoid failure?

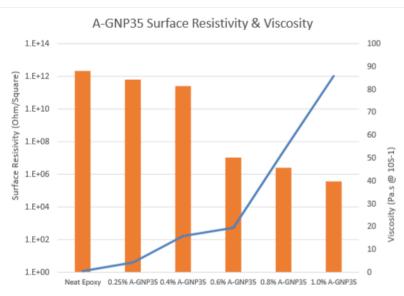
What?

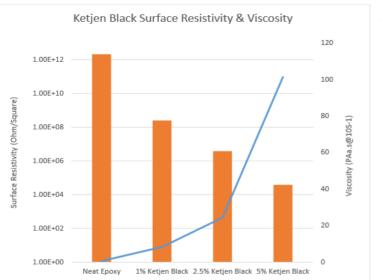
If powder, an I OK with using HARNs?


If a dispersion, what would be best option to use to deliver graphene into the target material?

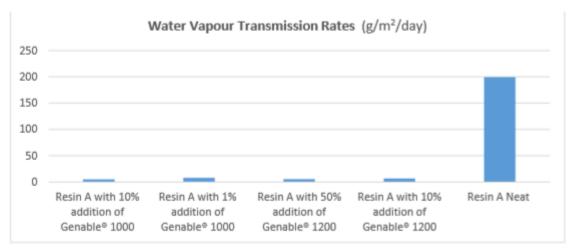
Is media compatible? Is it part of the host material formulation?

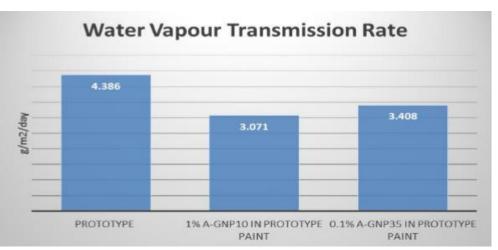
- General dispersion use
 - Understanding End-user's process is key!
 - Compatibility will graphene addition upset the balance of the rest of the formulation?
 - Balancing the addition of high aspect ratio, high surface area material
 - Sufficient binder resin to coat everything?
 - Is graphene replacing something else?
 - Loading level in dispersion and dilution to suit
 - What happens to the rest of the dispersion?
 - Use the dispersion for reaction purposes?
 - Viscosity
 - Particle size
 - Stability
 - Settling / Agglomeration / Re-dispersion



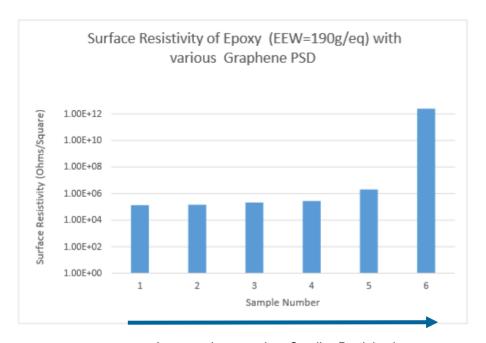


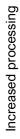
- Dispersion loading level
- Considerations.....
- Loading level vs graphene type vs viscosity -> impact on formulating flexibility vs. other fillers for a fixed particle size range
- Loading level vs end use performance example delivery of electrical conductivity
- Balancing
 - Loading level
 - Processibility
 - End use performance
 - Effectiveness / Efficiency


Loading level



- Loading level considerations
- Loading level of graphene solids
- Impact of graphene in the rest of the formulation Simple vs complex
- Example water vapour transmission rate
- Other aspects:-
- Surface area of platelets
- Chemistry on platelets
- pH of dispersion
- Host formulation and workable viscosity window
- Dispersibility into formulation
- Process Best point to add materials?




- Particle size distribution
- How does particle size distribution impact the end application?
- Aspect ratio is a key attribute
- Impact in composites.....
- Fiber diameter vs graphene particles vs volume fraction
- Impact in Coatings......
- Aspect ratio for barrier performance and tortuosity
- Impact on Conductivity? Mechanical?

Epoxy resin (EEW=250 g/eq)	Dx(10) (μm)	Dx(50) (μm)	Dx(90) (μm)
1	4.75	47.7	141
2	0.03	5.74	14.1
3	0.03	4.42	10.6
4	0.37	4.25	12.8
5	0.02	3.25	10.6
6	0.02	1.86	6.44

EEW=190 (g/eq)	Dx(10) (μm	Dx(50) (μm)	Dx(90) (μm)
1	36.2	154	382
2	4.52	43.6	146
3	2.06	34.6	103
4	0.72	25.2	71.6
5	0.02	1.28	25.9
6	0.02	0.886	21.7

Increased processing, Smaller Particle size

Safe nanomaterials handling

REACH

TSCA/EPA

High Aspect Ratio Nanomaterials

What is the Nanoform of graphene in question?

Is it even graphene?

Aspect ratio / HARN?

Toxicology of particular nanoform and read-across from data?

Volume effects and supporting data required?

What happens to the graphene in the end product?

Need to consider E2E product life cycle

Safe use in the workplace.

DISPERSION END USE APPLICATIONS

- Prepreg solutions
- Dispersed graphene nanoplatelets in epoxy prepregs

- Body panels
- Composite tooling
- Enhanced fracture toughness, longevity, surface finish

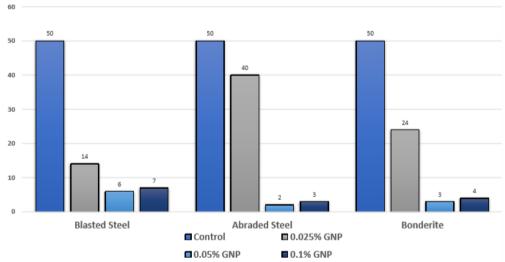
- Wet winding solutions
- Dispersed graphene nanoplatelets in winding resins
- Microcracking performance

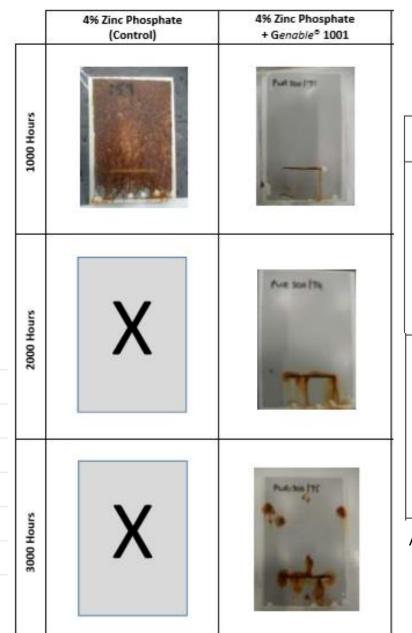
- Diffusion barrier
- https://video.buffer.com/v/5f766e6b9007945
 5542ad7f2?utm content=buffer2df39&utm
 medium=social&utm source=linkedin.com&utsampe
 m campaign=buffer

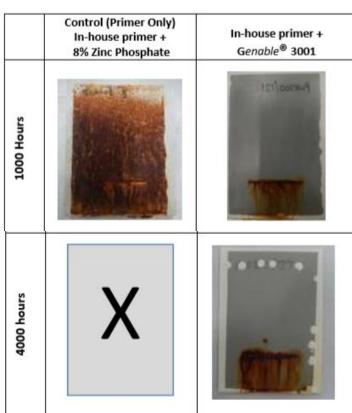
DISPERSION END USE **APPLICATIONS**

- Scope:- Work with major automotive Tier 1
- "We can see positive directional improvements in key mechanical properties of composites systems. Encouragingly, other mechanicals investigated did not show significant change as compared to baseline numbers"
- Areas of substantial performance gain include:-
 - **Tensile Strength and Modulus improvements**
 - **Flexural Strength and Modulus improvements**
 - **Impact performance improvements**

- Coatings Technology
- Graphene dispersions into coatings for anti-corrosion, barrier, chemical resistance

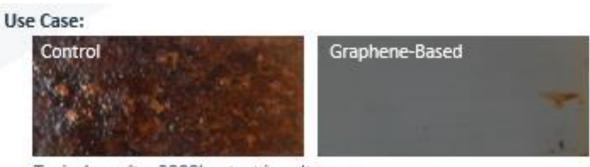



The Need for Dispersion and the Science Behind it

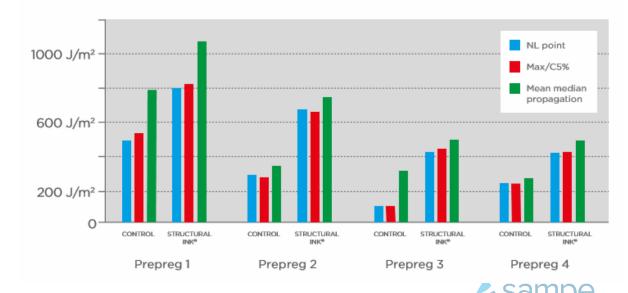

 DISPERSION END USE APPLICATIONS

 Exceptional anti-corrosion performance with dispersed

Neutral Salt Spray after 1000 hours - Creep Assessments



ASTM G85-94 test method


SUMMARY

- Fundamental to success with graphene nanoplatelets – achieving a great dispersion in the final product
- Use of additive dispersions enables ease of use, formulator flexibility and safe deployment
- Achievement of correct loading levels, viscosity, PSD etc can achieve outstanding performance results

Typical results: 3000hrs test in salt spray

Increases Fracture Toughness

Thank you

- Adrian Potts
- Applied Graphene Materials plc
- The Wilton Centre, Redcar, TS10 4RF, United Kingdom
- Employee contact Offices in USA in Louisville and Tulsa
- +1 (918) 344 8564
- adrian.potts@appliedgraphenematerials.com

