



Long Term Corrosion Protection Performance and Activity of Graphene-Based Epoxy Coating Systems for Aluminium and its Alloys

Matthew Sharp, Gaven Johnson and William Weaver

**April 2019** 



## Introduction





www.appliedgraphenematerials.com

### Introduction

Graphene's two-dimensional structure in the nanoplatelet form results in materials with:

- very high aspect ratio
- high surface area

These materials are particularly suited for use as multi-functional additives in paints and coatings.

The proposed mechanism by which graphene delivers anti-corrosion performance is a combination of physico-chemical process restricting uptake of water (combined with oxygen and salt) and electro-chemical activity.



### The Protection of Self-Passivating Metals

- Passivating metals readily form a stable and unreactive surface coating
  - Protection from further corrosion
- Under certain conditions of pH and oxygen concentration, passivation of passivating metals will proceed
- Outside of such conditions passivation will not occur
- The passivation layer may start to break down
- Unprotected aluminium will corrode





## The Protection of Self-Passivating Metals

- Traditionally, self-passivating metals have been protected from corrosion through anodization and alloying
- Anti-corrosive inhibitive coatings may also be applied to aluminium surfaces
- The active constituents of such coatings are typically marginally water soluble and produce active species which inhibit the ongoing corrosion of the metallic substrate
- Active constituents include chromates but other species such as phosphates, molybdates, nitrates, borates and silicates are also used
- The selection of active constituents is increasingly subject to regulatory pressures due to increased concerns for the environment and health and safety



## The Protection of Self-Passivating Metals

- Aluminium in contact with carbon materials could exhibit galvanic corrosion
  - Depending on how material is encapsulated
- Graphene has been demonstrated to be electrically conductive
  - Current density is 1,000,000 times greater than copper
- When dispersed into a matrix, graphene nano-platelets offer significantly reduced conductivity
  - Levels below the percolation threshold required to achieving any meaningful conductivity
- Graphene incorporated into a coating may offer the possibility of a dual functionality on aluminium
  - Improved barrier performance
  - Promotion of self-passivation





### **AGM Graphene Nano Platelets**



Reduced graphene oxide (RGO)

- Composed of mixture of nanoplatelet type sheets
- Excellent barrier properties
- Moderate density and surface area gives high loading levels in most matrices
- Typically 10% in dispersion for further dilution in final formulation
- Resistivity 50, 000  $\Omega$ .m





#### Graphene

- Very thin, crumpled sheets. (of 5-15 atomic layers)
- Very low density and high surface area, enabling enhanced corrosion
- Typical loading levels 0.5-1% by weight in dispersion for further dilution in final formulation
- Resistivity 0.0037  $\Omega$ .m

AGM supplies its graphenes in dispersion format



# Objectives

Initial work has shown an increase corrosion protection performance using graphene-based coatings with relatively low GNP loadings (down to 0.003 wt.%)

We seek to understand the mechanism behind such improvements in the corrosion protection of aluminium through the use of simple graphene-containing epoxy clears



## **Experimental**





## **Test Program**

#### **Prohesion/Salt Spray Testing**

- ASTM G85 annex 5 (prohesion) for a period of up to 4000 hours
- Panels were assessed at 500 hour intervals for signs of blistering, corrosion, and corrosion creep in accordance with ISO4628

### **Electro-chemical AC Impedance Spectroscopy (EIS)**

- Demonstrate the improvement of the barrier properties through the addition of graphene to organic coatings
- Assess the impact of graphene within organic coatings on the rate of passivation of aluminium

#### **Potentiodynamic Polarisation Technique**

 Assess the impact of graphene within organic coatings on the rate of passivation of aluminium



# **Electro-chemical Testing**



- Measurements recorded using a Gamry 1000E potentiostat in conjunction with a Gamry ECM8 multiplexer
- The test area of the working electrode was 14.6 cm<sup>2</sup> and run using a 3.5 wt% NaCl electrolyte
- For EIS, an AC voltage of 10 mV was applied across the samples, with a zero volt DC bias, over a frequency range of 1 MHz to 0.05 Hz
- For potentiodynamic tests, a potential of ±250 mV from the open circuit potential (500 mV sweep) was applied at a scan rate of 0.5 mV/second



# **Testing of Scribed Coatings**



- Scribed samples were studied in addition to unscribed samples
- Scribing offers an immediate study of the bare metal substrate in contact with electrolyte and functional coating (triple phase boundary)
- To identify any electrochemical influence imparted by the graphene
- Provides the opportunity to observe changes prior to the lengthy breakdown/degradation of the functional coating



# **Coating Formulation**

- Various loadings of GNPs were incorporated into an epoxy resin system
- Resin only clears and not fully formulated products
- Typical GNP Loadings for enhanced barrier properties are 0.1 0.5 wt.%

|                 |                     | Graphene Type |                 |  |
|-----------------|---------------------|---------------|-----------------|--|
| Sample          | Epoxy System (wt.%) | RGO (wt.%)    | Graphene (wt.%) |  |
| 1 (Epoxy Blank) | 100                 | 0             | 0               |  |
| 2               | 99.5                | 0.5           | 0               |  |
| 3               | 99.97               | 0.03          | 0               |  |
| 4               | 99.997              | 0.003         | 0               |  |
| 5               | 99.9                | 0             | 0.1             |  |
| 6               | 99.97               | 0             | 0.03            |  |
| 7               | 99.997              | 0             | 0.003           |  |



# **Panel Preparation**

- Aluminium 5005 panels of dimensions 150 x 100 x 2mm
- Panels were degreased using acetone prior to coating application
- Coatings were applied using a conventional gravity-fed spray gun
  - DFTs 40-60 μm
- All panels were allowed to cure for a period of 7 days at 23°C (+/-2°C).



### **Results**





www.appliedgraphenematerials.com

# **Prohesion/Salt Spray Testing**

- 4000 hours prohesion testing
- No obvious signs of corrosion were noted in any of the graphene-incorporated epoxy samples
- Graphene loadings as low as 0.003 wt.% (barrier type effect from the graphene nanoplatelets expected to be relatively low)











| Sample              | Degee of Corrosion | Area (%) | Blistering | Adhesion to substrate |
|---------------------|--------------------|----------|------------|-----------------------|
| Epoxy Blank         | Ri 5               | 40-50    | -          | Delamination          |
| 0.003 wt.% Graphene | Ri O               | 0        | -          | Good                  |
| 0.03 wt.% Graphene  | Ri O               | 0        | -          | Good                  |
| 0.003 wt.% RGO      | Ri O               | 0        | -          | Good                  |
| 0.03 wt.% RGO       | Ri O               | 0        | -          | Good                  |

## EIS results



Bode plots post 60 hours immersion

- Difference in impedance between steel and aluminium due to presence of passivation layer
- Increased barrier performance seen with all coated samples
- An order of magnitude improvement in barrier performance over the blank coating is seen for the graphene sample



# EIS Equivalent Circuit Modelling

Initial Immersion, T = 0 (high impedance coating)

| Soution           | Coating | ate   |
|-------------------|---------|-------|
| Solution resistar |         | ostra |
| on reg            |         | Sub   |
| olutio            |         | tal   |
| Sc                |         | Me    |

Short term



Longer term or scribed coating



Double layer capacitance





Interfacial Properties

**Coating Properties** 

# EIS Equivalent Circuit Modelling

| Circuit element                            | Epoxy blank             | 0.003 wt.%               | 0.03 wt.%                | 0.1 wt.% A               | 0.003 wt.%              | 0.03 wt.%               |
|--------------------------------------------|-------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
|                                            |                         | Graphene                 | Graphene                 | Graphene                 | RGO                     | RGO                     |
| Solution resistance, R <sub>soln</sub> (Ω) | 22.97                   | 23.62                    | 17.27                    | 21.35                    | 21.13                   | 32.10                   |
| Double layer capacitance, C <sub>cor</sub> | 8.97 x 10 <sup>-9</sup> | 7.23 x 10 <sup>-11</sup> | 5.48 x 10 <sup>-11</sup> | 3.26 x 10 <sup>-12</sup> | 1.70 x 10 <sup>-8</sup> | 3.34 x 10 <sup>-9</sup> |
| (F/cm <sup>2</sup> )                       |                         |                          |                          |                          |                         |                         |
| Corrosion resistance, R <sub>cor</sub>     | 6.29 x 10 <sup>5</sup>  | 4.38 x 10 <sup>6</sup>   | 7.37 x 10 <sup>6</sup>   | $3.34 \times 10^7$       | 7.45 x 10 <sup>5</sup>  | 4.20 x 10 <sup>5</sup>  |
| (Ω.cm²)                                    |                         |                          |                          |                          |                         |                         |

- Similar values for solution resistance indicative of good data fit
- The epoxy blank sample shows a relatively high double layer capacitance and low corrosion resistance (normal passivation of aluminium)
- The double layer capacitance is seen to decrease with the addition of Graphene as low as 0.003 wt.% (likely greater passivation)
- Graphene addition appears to increase corrosion resistance 2 orders of magnitude for the 0.1 wt.% sample with a smaller increase as low as 0.003 wt.%
- Again suggests Graphene is acting to increase the rate of passivation within the scribed region
- Graphene can act as both a barrier and also increases rate of passivation
- RGO appears to make no difference to corrosion resistance and double layer capacitance
  - No real impact on the rate of passivation of aluminium
  - Appears to act mostly as a barrier material



## Potentiodynamic Polarisation Scans

- Beyond the Tafel regions, when an extended potential range is applied, additional useful features may be observed in the polarisation data
- One such feature is the passivation potential
  - As the applied potential increases above this value, a decrease in the measured current density is observed until a low, passive current density is achieved
  - The point at which the current density undergoes no change with an increase in applied potential (passive region)
- Beyond this point, if the applied potential permits, and is sufficiently positive, the current rapidly increases: the breakaway potential. For aluminium alloys, this breakaway potential may be due to a localised breakdown in passivity (pitting).







## Potentiodynamic Polarisation Scans





#### 0.03 wt.% Graphene (Unscribed)

- No direct access to the metal surface
- No passivation occurring
- Relatively high Tafel constant
- Coating acting as a barrier

#### 0.03 wt.% Graphene (Scribed)

- Direct access to the metal surface
- Onset of passivation observed at ~+18 mV from the corrosion potential
- Relatively low Tafel constant high anodic reaction



## Potentiodynamic Polarisation Scans





# 0.03 wt.% RGO (Scribed & Unscribed)

- Almost identical plots for scribed and unscribed samples
- Passivation onset does not appear in the RGO samples
- RGO, of lower conductivity, is performing more as a physical barrier than controlling corrosion by accelerated passivation



## **Summary**

- During prohesion testing, all graphene incorporated samples significantly outperformed the epoxy blank control
- EIS has shown that graphene incorporated at 0.1
  wt.% offers a greater barrier performance than the blank control
- Fitting of equivalent circuits models to the EIS data has shown an increase in corrosion resistance where RGO samples showed no change from the control
- Potentiodynamic testing has shown an onset off passivation in the more conductive graphene samples
- Suggests graphene is acting to increase the rate of passivation of the metal surface, acting in a catalytic manner





## **Potential Applications**

- Low build primers extension of lifetime
- In combination with anodised metals
- In combination with other forms of conversion coating









www.appliedgraphenematerials.com info@appliedgraphenematerials.com

The Innovation Centre, Wilton Site, Redcar. TS10 4RF United Kingdom

