

Characterization of a Novel Hybrid Anticorrosive System Comprising Graphene Nanoplatelets and Non-Metal-containing Anticorrosive Pigments

Andy Gent, William Weaver, Lynn Chikosha, Gaven Johnson & Matthew Sharp

March 2019

Introduction

- There are mixed literature reports of the use of graphene within anti-corrosive coatings
 - Corrosion performance enhancement or performance reduction?
- A variety of mechanisms have been proposed in the literature by which graphene delivers anti-corrosion performance
 - Physico-chemical process (restricting uptake of water/oxygen and salts)
 - Electro-chemical activity.

Introduction

- Platelike materials such as glass flake and micas have historically been used as barrier pigments that provide a tortuous path in anti-corrosion primers. Graphene offers a step change two-dimensional structure delivering:
 - high aspect ratio
 - high surface area
 - Low density
- Electro-chemical activity due to graphene's conductivity is dependent on
 - Graphene type
 - Loading level
 - Availability
- This work provides preliminary corrosion performance results relating to commercially available graphene nanoplatelet (GNP) products.

AGM Graphene Nano Platelets

- Reduced Graphene Oxide
- Composed of mixture of nanoplatelet type sheets

- Graphene
- Very thin, crumpled sheets (of 5-15 atomic layers)

AGM GNPs are manufactured using proprietary and patented bottom up synthesis

Graphene Dispersions

AGM supplies its graphenes in stable dispersions that are:

- Ready to use and easy to incorporate
- Available in a number of safe to handle formats
- Optimized to impart specific performance enhancements

Objectives

Demonstrate improved anti-corrosive performance

- Extended coating life expectancy
- Potential for reduced maintenance schedules
- Identify significant uplifts in anti-corrosion performance through synergistic use of non-metallic anti-corrosive pigments in combination with graphene nanoplatelets.
- Employing EIS as a tool to understand mechanism.
- Using commercially available and ready to use graphene dispersions, optimised for use in existing coatings systems.

Test Program

Demonstrating improved coating performance and extended lifetime in a typical Industrial Epoxy Formulation:

- Prohesion Testing
 - ASTMG85 annex 5
 - Duplicate panels were prepared for assessment at intervals of 500, 1000, 2000, 3000, and 5000 hours
- Electro-chemical studies
 - Novel Test Method looking at both scribed and unscribed substrates
 - AC Impedance Spectroscopy (AC EIS)
 - Corrosion Potential Measurements (E_{corr})
- Overcoating intervals and adhesion
- Water Vapor transmission (WVTR) Testing
- Mechanical Testing (Conical mandrel, Abrasion, Impact)

Panel Preparation

- Mild steel panels (CR4)
 of dimensions 150 x
 100 x 2mm, grit blasted
 to SA2.5
- Coatings were applied using a conventional spray gun equipped with a 1.2mm tip
- Coating thickness -100μm DFT
- All panels were allowed to cure for a period of 7 days at 23°C (+/-2°C).

Electro-chemical Study

- The EIS study of scribed samples provides supporting data relating to the barrier performance of the coatings
- Scribed samples were studied in addition to unscribed samples
 - Scribing offers an immediate study of the bare metal substrate in contact with electrolyte and functional coating (triple phase boundary)
 - To identify any electro-chemical influence imparted by the graphene and / or active inhibitor
 - Provides the opportunity to observe changes prior to the lengthy breakdown/degradation of the functional coating

Base Primer Formulation

Component	Weight percent			
Epoxy (Liquid Epoxy Resin, EEW = 250)	15.119			
Amino resin	0.244			
Dispersant	0.402			
Xylene	15.376			
Bentonite thixotrope	0.366			
Butanol	1.986			
Xylene	10.966			
Titanium Dioxide	10.966			
Anticorrosive Pigment	4-8 (Variable)			
Blanc Fixe	43.619			
GNP Dispersion	0-10 (Variable)			
Ероху	0-10 (Variable)			
Xylene	0			

VOC 320 g/l

PVC 35%

Stoichiometry 100%

Hardener Polyamine

Primer Formulation Variants

Variant	Description	GNP Content
1	Standard	None
2	Standard + 8% $Zn_3(PO_4)_2$	None
3	Standard + $4\% Zn_3(PO_4)_2$	None
4	Standard + Pigment A*	None
5	Standard	Grade 10 at 0.5%
6	Standard + 8% $Zn_3(PO_4)_2$	Grade 10 at 0.5%
7	Standard + $4\% \text{ Zn}_3(PO_4)_2$	Grade 10 at 0.5%
8	Standard + Pigment A*	Grade 10 at 0.5%
9	Standard	Grade 35 at 0.1%
10	Standard + 8% $Zn_3(PO_4)_2$	Grade 35 at 0.1%
11	Standard + $4\% Zn_3(PO_4)_2$	Grade 35 at 0.1%
12	Standard + Pigment A	Grade 35 at 0.1%

^{*}Calcium oxide-modified silica (non-metallic anti-corrosive pigment)

Prohesion Testing – 1000 Hours

Primary Anti- corrosive	GNP Content	Creep (mm)	Blistering Quantity	Size (ISO)	Corros ion	Comments
None	None	>10	0	S0	Ri5	Very poor
None	Grade 10 at 0.5%	>10	0	S4	Ri5	Corroded across whole face
None	Grade 35 at 0.1%	3	0	S0	Ri3	Corrosion spotting across face
8% Zn ₃ (PO ₄) ₂	None	4	1	S 3	Ri5	Corrosion across face
$8\% Zn_3(PO_4)_2$	Grade 10 at 0.5%	2	0	S0	Ri1	Corrosion spotting across face
8% Zn ₃ (PO ₄) ₂	Grade 35 at 0.1%	2	0	S0	Ri2	Corrosion spotting across face
$4\% Zn_3(PO_4)_2$	None	8	1	S 3	Ri5	Corrosion across face
4% Zn ₃ (PO ₄) ₂	Grade 10 at 0.5%	4	0	S0	Ri0	Good
$4\% Zn_3(PO_4)_2$	Grade 35 at 0.1%	>10	0	S0	Ri5	Completely corroded
Pigment A	None	3	0	S0	Ri3	Corrosion spots starting
Pigment A	Grade 10 at 0.5%	1	0	S0	Ri2	Good
Pigment A	Grade 35 at 0.1%	>10	3	S4	Ri5	Corroded across whole face

Prohesion Testing – 5000 Hours

Primary Anti- corrosive	GNP Content	Creep (mm)	Blistering Quantity	Size (ISO)	Corrosion	Comments
None	None	>10	0	S0	Ri5	Very poor
None	Grade 10 at 0.5%	>10	0	S4	Ri5	Corroded across whole face
None	Grade 35 at 0.1%	>10	0	S0	Ri5	Corrosion spotting cross face
$8\% \operatorname{Zn}_{3}(PO_{4})_{2}$	None	>10	1	S3	Ri5	Corrosion across face
$8\% \operatorname{Zn}_{3}(PO_{4})_{2}$	Grade 10 at 0.5%	>10	0	S0	Ri5	Corrosion spotting cross face
8% Zn ₃ (PO ₄) ₂	Grade 35 at 0.1%	>10	0	SO	Ri5	Corrosion spotting cross face
$4\% Zn_3(PO_4)_2$	None	>10	1	S 3	Ri5	Corrosion across face
4% Zn ₃ (PO ₄) ₂	Grade 10 at 0.5%	5	1	S2	Ri2	Corrosion spreading from scribe
4% Zn ₃ (PO ₄) ₂	Grade 35 at 0.1%	>10	0	S0	Ri5	Completely corroded
Pigment A	None	>10	0	SO	Ri5	Corrosion spots starting
Pigment A	Grade 10 at 0.5%	1	0	S0	Ri2	Good
Pigment A	Grade 35 at 0.1%	>10	3	S4	Ri5	Corroded across whole face

Prohesion Test Sample Images

Performance on ASTM G85 prohesion test was extended from 1000 to 5000
hours by using graphene in combination with metal free active inhibitors

- Testing using ASTM G85 Prohesion allows for stronger correlation with natural exposure, as opposed to ASTM B117 (Continuous Salt Spray).
- Further work is currently underway looking at performance under Continuous Salt Spray.

Water Vapor Transmission (WVTR)

- ASTM D 1653-03 using Test Method B (wet cup method)
- The WVTR of the Control primer with grade 10 at 0.1 wt.% loading was found to be the lowest
 - Best barrier property performance increase
 - 30% reduction in WVTR
- Grade 35 at 0.1 wt.% loading gave a 22% reduction in in WVTR

AC Impedance (EIS) of Coatings

Impedance Testing (EIS) – Unscribed Coatings

- Graphene modified coatings offered a higher impedance values than straight Zn₃(PO₄)₂ and Pigment A samples
- Increase in impedance observed above $Zn_3(PO_4)_2$ base in Grade 10 $Zn_3(PO_4)_2$ hybrid sample
- Excellent (10¹⁰ Ohm.cm²) impedance observed with Grade 10 with Pigment A coating over duration of test.

Increased impedance equals better barrier.

Impedance Testing (EIS) – Scribed Coatings

- Coatings in general are of lower impedance relative to the unscribed samples as expected due to scribe presence
- Performance ranking (impedance ordering) the same as seen for the unscribed samples
 - Continued performance barrier effect with coatings incorporating GNPS
- Pigment A shows a higher level of impedance compared to Zn₃(PO₄)₂
- Grade 10/Pigment A hybrid continues to show significant performance increase in contrast to Zn₃(PO₄)₂ hybrids

Corrosion Potential Measurements – Scribed Coatings

- Scribing significantly reduced the ECorr, as expected
- Both Zn₃(PO₄)₂ sample and Grade 10 Zn₃(PO₄)₂ samples show initial elevated but decreasing E_{corr} values
 - Solubility is higher compared to Pigment A
 - Faster active utilization
- Pigment A + Grade 10 shows a steady increase in corrosion potential
- Initial testing only conducted over a relatively short time period

Mechanical Properties

		Flo	exibility	Abrasion Resistance	Impact Resistance
		Cracking			
Description	GNP Content	(mm)	Elongation (%)	Wear Rating	Cracking begins at height
None	None	0	<35	389	20cm
None	Grade 10 at 0.5%	120	3	460	10cm
None	Grade 35 at 0.1%	12	19	539	10cm
$8\% Zn_{3}(PO_{4})_{2}$	None	4	21	347	20cm
8% Zn ₃ (PO ₄) ₂	Grade 10 at 0.5%	4	21	534	50cm
8% Zn ₃ (PO ₄) ₂	Grade 35 at 0.1%	4	21	269	10cm
4% Zn ₃ (PO ₄) ₂	None	4	21	356	10cm
4% Zn ₃ (PO ₄) ₂	Grade 10 at 0.5%	6	23	280	60cm
4% Zn ₃ (PO ₄) ₂	Grade 35 at 0.1%	100	5	365	30cm
Pigment A	None	120	3	297	10cm
Pigment A	Grade 10 at 0.5%	120	3	397	10cm
Pigment A	Grade 35 at 0.1%	11	19	362	10cm

Overcoat Interval/Adhesion

			Initial		Wet		Recovery	
		Overcoating	Intercoat	Substrate	Intercoat	Substrate	Intercoat	Substrate
1st Coat	2nd Coat	Interval	Adhesion	Adhesion	Adhesion	Adhesion	Adhesion	Adhesion
Control	Topcoat	1 day	4	5	4	5	5	4
Control	Topcoat	3 day	4	5	4	5	5	4
Control	Topcoat	7 day	4	5	5	4	4	4
Control +								
Grade35	Topcoat	1 day	4	5	4	5	5	4
Control +								
Grade35	Topcoat	3 day	4	5	4	5	5	4
Control +	Tananah	4	F	F	_	4	Б	4
Grade10	Topcoat	1 day	5	5	5	4	5	4
Control +								
Grade10	Topcoat	3 day	5	5	5	4	4	4
Control +	Tanasah	7 da	F	Е	4	F	4	4
Grade10	Topcoat	7 day	5	5	4	5	4	4

- All systems showed good to excellent adhesion to substrates
- Good overcoatability with PU topcoat, intervals up to 7 days.

Discussion

- GNP incorporated into the base primer alone or combined with an active pigment (hybrid) improved the barrier/corrosion properties of the coatings
 - Grade 10 GNPs combined with active pigments offer high level of performance. No apparent evidence of electro-chemical contribution to corrosion resistance
 - Grade 10 (reduced graphene oxide) has a relatively high electrical resistance where Grade 35 (graphene) is more electrically conductive (both systems are loaded substantially below the percolation threshold)

Discussion

- The primary mechanism of the GNP suggested is physico-chemical, extending the diffusional pathway (tortuous path).
- Assuming that film formation and hydrophilic pathways are unchanged (Pigment Volume Concentration constant)
- The net effect an efficient physico-chemical barrier effect to water/salts is
 - steeper decrease in water concentration through the film.
 - preservation of the active pigment over the coating life
- Such a mechanism would be a function of
 - Physico-chemical impact of the graphene,
 - graphene morphology
 - solubility and passivation rate of the active pigments.
- Additional studies are required to fully determine the exact mechanism of the enhanced performance, which is observed in the salt spray resistance.

Conclusion

- Graphene modified hybrid coatings offered
 - Good over-coatability
 - Good adhesion
 - Significantly extended corrosion resistance under prohesion
- Graphene modified hybrids provide opportunity for
 - Reduced maintenance costs
 - Extended maintenance intervals
 - Green alternative to zinc phosphate through combination with Pigment A

www.appliedgraphenematerials.com info@appliedgraphenematerials.com

The Innovation Centre, Wilton Site, Redcar. TS10 4RF United Kingdom

