

TECHNICAL APPLICATION NOTE

Anti-Corrosion Primers: Part 2 Hybrid Non-metallic Pigments

Technical Application Note: Anti-Corrosion Coating – Part 2 Version 2.1 – March 2021 © 2021 Applied Graphene Materials. All rights reserved.

Contents

1.	I	Introduction							
	1.1	L .	Hyb	rid Anti-Corrosion Pigments	3				
2.	I	Inhik	bitor	S	3				
3.		Anti	-Corr	rosion Evaluation	3				
	3.1	L.	Турі	ical Graphene-Based Primer Formulation	4				
	3.2	2.	Mar	nufacturing Guidelines for Anti-Corrosion Coating	5				
	3.3	8.	Test	Panel Preparation	5				
4.	9	Salt	Spra	y Testing ASTM G-85-94 Prohesion Results	6				
	4.1	L.	Corr	rosion Rating Test Results (1000, 2000 & 3000 Hours)	. 10				
	4.2	2.	Mec	chanical Testing (7 Day Cure): Adhesion, Flexibility, Impact & Abrasion	. 11				
	4	4.2.1	L.	Adhesion Testing	. 11				
	4	4.2.2	2.	Conical Mandrel Testing	. 12				
	4	4.2.3	8.	Impact Testing	. 12				
	4	4.2.4	I.	Taber Abrasion Testing	. 12				
5.	-	Tech	nica	l Comments	. 13				
	5.1	L.	Asse	essing if Graphene can Enhance Anti-Corrosion Performance	. 13				
	5.2	2.	Perf	ormance	. 13				
	5.3	8.	Form	nulating	. 13				
6.	(Gend	able®	Storage Stability	. 14				
	6.1		Epo	ху	. 14				
	6.2	2.	Wat	er	. 14				
	6.3	3 .	Solv	rents	. 14				

1. Introduction

Applied Graphene Materials UK Ltd (AGM) manufacture graphene nanoplatelets using a proprietary and patented process developed at Durham University in the UK.

Applied Graphene Materials UK Ltd have developed significant in-house knowledge on the behaviour and performance of graphene modified coating formulations. These guidance notes are designed to provide formulation insights to assist development scientists achieve a technical appreciation of this novel technology.

The addition of graphene alone by a **G**enable[®] Dispersion into coating formulations has demonstrated excellent barrier properties leading to a reduction in water vapour transmission rates (WVTR). This reduction in WVTR significantly enhances the anti-corrosion performance of an epoxy coating. (This improvement is discussed in more detail in AGM's Technical Application Note on Anti-Corrosion Primers: Part 1.)

1.1. Hybrid Anti-Corrosion Pigments

This technical application note describes in further detail how the addition of **G**enable[®] dispersions and non-metallic active inhibitor pigments to create a hybrid pigment package which can lead to significant improvements in the anti-corrosion performance of a primer and the potential benefits this can provide for a customer.

2. Inhibitors

An ideal inhibitive coating should form a barrier against water and detrimental ions whilst simultaneously releasing a sufficient quantity of inhibitor. These two requirement are antagonistic in principle and require a balance in the pigment with a dependency on the barrier properties of the coating. The inhibitors used in this work included calcium oxide modified silica, ion exchanged amorphous silica and oxyaminophosphate salts.

Inhibitive coatings are generally applied in the form of primers and are used where the substrate is exposed to atmospheric corrosion and not where the substrate is immersed in water or soil.

The selection of an active pigment has been coming under ever increasing environmental and regulatory pressures leading manufactures to remove and/or reduce the amount of metal salts used in coating systems.

3. Anti-Corrosion Evaluation

The objective of the work in this technical note was to evaluate and determine if graphene nanoplatelets in combination as a hybrid pigment package with non-metallic pigments can enhance the performance of the corrosion protection in coating systems to deliver a meaningful extension of life to a C3 category coating according to ISO 12944.

Testing carried out

Accelerated exposure:	Salt Spray testing	ASTM G-85-94 Prohesion
Mechanical Testing:	Flexibility	ISO 6860: 6860
	Impact	ISO 6272-2:2004
	Abrasion	ISO 7784
	Adhesion	ISO 4624

3.1. Typical Graphene-Based Primer Formulation

The evaluation was conducted using the graphene based primer formulation below.

The primer was made up using the formulation below resulting in an 87% stoichiometry. It was cured over seven days at ambient room temperature.

	Part A: Epoxy Base					
		Item	Raw material name		Weight %	
		Charge items 1,2,3,4 and 5 and mix at			G enable [®]	G enable [®]
	_	high s	peed (2000 rpm) for 10 minutes	Control	1001	1201
		1	Epoxy resin (EEW= 250g/eq.)	11.34	11.34	11.34
b		2	Cymel U-216 resin	0.25	0.25	0.25
arg(3	Anti-terra U	0.41	0.41	0.41
CP.		4	Xylene	7.84	7.84	7.84
		5	Tixogel MP	0.37	0.37	0.37
		Check	gel is homogenous and free of			
		bits. C	Continue mixing if not.			
		Add it	ems 6 to 9. Mix at high speed			
		(2000	rpm) for 15 minutes. Check grind			
		<25 m	nicrons and add items 6.			
	ıΓ	6	Butanol	2.02	2.02	2.02
pu		7	Titanium dioxide	11.18	11.18	11.18
Gri		8	Inhibitive pigments (A or B or C)	0	1	1
		9	Blanc fixe	44.47	44.47	44.47
		Add it	ems 11, 12 & 13. Mix at medium			
	1	speed	(1,000rpm) for 15 minutes.			
N N		10	Genable® dispersion addition	0	5	10
μĞ		11	Epoxy resin (EEW=250g/eq.)	14.28	8.28	3.28
Let		12	Xylene	7.84	7.84	7.84

Part B: Hardener

The epoxy to hardener mix ratio can be calculated for an appropriate hardener based upon the EEW and AHEW values.

рус	35	37	37
VOC (g/l)	320	309	314

3.2. Manufacturing Guidelines for Anti-Corrosion Coating

It is recommended that **G**enable[®] dispersions should be added at the let-down stage of the manufacturing process.

Impact on PVC: For guidance please contact Business Development on the included contact details.

3.3. Test Panel Preparation

Substrate	Cold rolled steel
Dimensions	152mm by 101mm
Preparation	Grit blasting to SA2-1/2 rolled by degreasing
	with acetone
Grit	Irregularly shaped chrome/nickel shot
Application	Spray application (gravity-fed gun 1.2 mm tip)
Coating Thickness	DFT 60-75 μm
Curing	7 Days at room temperature

4. Salt Spray Testing ASTM G-85-94 Prohesion Results

Primer Control, **G**enable[®] **1001** and **G**enable[®] **1201** test panels after 1000, 2000 & 3000 hours of testing to ASTM G-85-94:

	Control (Primer Only)	Control + Genable [®] 1001	Control + Genable® 1201
1000 Hours		RJR 200,53	HIR 2001
2000 Hours	X	X	Pulksandi / 13A
3000 hours	X	X	

Primer Control, **G**enable[®] **1001** and **G**enable[®] **1201** test panels (all incorporating Pigment A) after 1000, 2000 and 3000 hours of testing to ASTM G-85-94:

	Control (Primer with Pigment A)	Control + Genable [®] 1001	Control + Genable [®] 1201		
1000 Hours	PURSOOFS	Pwr 200.] 85	PURZOD (1152)		
2000 Hours	X	Χ	Χ		
3000 Hours	X	X	X		

	Control (Primer with Pigment B)	Control + Genable [®] 1001	Control + Genable [®] 1201
1000 Hours	Pula zaafus	Puezoo/121	Pup 200112
2000 Hours	X	Ruezoolizz	X
3000 Hours	X	PUEZCO JIZS	X

Primer Control, **G**enable[®] **1001** and **G**enable[®] **1201** test panels (all incorporating Pigment B) after 1000, 2000 and 3000 hours of testing to ASTM G-85-94:

Primer Control, **G**enable[®] **1001** and **G**enable[®] **1201** test panels (all incorporating Pigment C) after 1000, 2000 and 3000 hours of testing to ASTM G-85-94:

	Control (Primer with Pigment C)	Control + Genable [®] 1001	Control + Genable® 1201
1000 Hours	200 [858	Pur 200 / 284	Pude 2001269
2000 Hours	X	X	Purpage 1934
3000 Hours	X	X	Pur sol 285

4.1. Corrosion Rating Test Results (1000, 2000 & 3000 Hours)

	% Graphe		1000			
Genable [®] Addition Level in Wet Primer	ne in Wet Primer	Creep (mm)	Blistering Quality	Size (ISO)	Corrosion	Comments
None (Control)	0	>10	0	S4	Ri5	Corroded across whole face
G enable [®] 1001 at 5%	0.50%	>10	2	S2	Ri5	Corroded across whole face
G enable [®] 1201 at 10%	0.10%	>10	4	S3	Ri5	Small corrosion spots across face
None (Control)	0	>10	0	SO	Ri5	Corrosion spots start
G enable [®] 1001 at 5%	0.50%	1	0	SO	Ri2	Good
G enable [®] 1201 at 10%	0.10%	>10	3	S4	Ri5	Corroded across whole face
None (Control)	0	>10	2	S4	Ri5	Corroded across whole face
Genable® 1001 at 5%	0.50%	>10	0	SO	Ri5	Corrosion across half panel
Genable® 1201 at 10%	0.10%	<1	0	SO	RiO	Good

1000 Hours Corrosion Rating Test Results

2000 Hours Corrosion Rating Test Results

		% Graph	2000 Hours				
		ene in		Blisteri			
Primary Anti-	Genable® Type & Addition Level in Wet	Wet Prime	Creep	ng Ouanti	Size	Corrosi	
Corrosive	Primer	r	(mm)	ty	(ISO)	on	Comments
Pigment A	None (Control)	0				Ri5	Failed, didn't reach 2000 hours
Pigment A	G enable® 1001 at 5%	0.50%				Ri5	Failed, didn't reach 2000 hours
Pigment A	G enable® 1201 at 10%	0.10%				Ri3	Failed, didn't reach 2000 hours
Pigment B	None (Control)	0				Ri5	Failed, didn't reach 2000 hours
Pigment B	G enable [®] 1001 at 5%	0.50%	1	0	S0	Ri2	Good
Pigment B	G enable® 1201 at 10%	0.10%				Ri2	Failed, didn't reach 2000 hours
Pigment C	None (Control)	0				Ri5	Failed, didn't reach 2000 hours
Pigment C	G enable® 1001 at 5%	0.50%				RiO	Failed, didn't reach 2000 hours
Pigment C	G enable® 1201 at 10%	0.10%	<1	0	S0	Ri0	Good

3000 Hours Corrosion Rating Test Results

		% Graphe		2000	Hours		
Primary Anti-	Genable® Type & Addition Level in Wet	ne in Wet	Creep	Blister ing	Size	Corrosi	Commente
Pigment A	None (Control)	0			(130)	Ri5	Failed, didn't reach 2000 hours
Pigment A	G enable [®] 1001 at 5%	0.50%				Ri5	Failed, didn't reach 2000 hours
Pigment A	G enable [®] 1201 at 10%	0.10%				Ri3	Failed, didn't reach 2000 hours
Pigment B	None (Control)	0				Ri5	Failed, didn't reach 2000 hours
Pigment B	G enable [®] 1001 at 5%	0.50%	1	0	S0	Ri2	Good
Pigment B	G enable® 1201 at 10%	0.10%				Ri2	Failed, didn't reach 2000 hours
Pigment C	None (Control)	0				Ri5	Failed, didn't reach 2000 hours
Pigment C	G enable [®] 1001 at 5%	0.50%				RiO	Failed, didn't reach 2000 hours
Pigment C	G enable [®] 1201 at 10%	0.10%	<1	0	S0	RiO	Good

4.2. Mechanical Testing (7 Day Cure): Adhesion, Flexibility, Impact & Abrasion

4.2.1. Adhesion Testing

		% Creations	Force (MPa)		'a)		
Primary Anti- Corrosive	Addition Level in Wet Primer	in Wet Primer	Rating 1	Rating 2	Average	Comment	
Pigment A	None	0	3.25	2	2.63	85% Adhesive failure	
Pigment A	Genable® 1001 at 0.5%	0.50%	2.8	3	2.9	60% Adhesive 40% Cohesive	
Pigment A	Genable® 1201 at 0.1%	0.10%	1	1.2	1.1	100% Adhesive	
Pigment B	None	0	2.8	2.8	2.8	20% Adhesive 80% Cohesive	
Pigment B	Genable® 1001 at 0.5%	0.50%	1.5	1.8	1.65	Glue failure	
Pigment B	Genable® 1201 at 0.1%	0.10%	2.25	2.8	2.53	100% Cohesive	
Pigment C	None	0	2.5	3	2.75	25% Adhesive 75% Cohesive	
Pigment C	Genable® 1001 at 0.5%	0.50%	3.25	3.5	3.38	25% Adhesive 75% Cohesive	
Pigment C	Genable® 1201 at 0.1%	0.10%	1	1.25	1.13	95% Adhesive 5% Cohesive	

4.2.2. Conical Mandrel Testing

Primary Anti- Corrosive	Genable® Type & Addition Level in Wet Primer	% Graphene in Wet Primer	Cracking	Elongation
Pigment A	None (Control)	0	4	21
Pigment A	G enable [®] 1001 at 5%	0.50%	0	<35
Pigment A	G enable® 1201 at 10%	0.10%	0	<35
Pigment B	None (Control)	0	4	21
Pigment B	G enable [®] 1001 at 5%	0.50%	0	<35
Pigment B	G enable® 1201 at 10%	0.10%	120	3
Pigment C	None (Control)	0	6	23
Pigment C	G enable [®] 1001 at 5%	0.50%	120	3
Pigment C	Genable® 1201 at 10%	0.10%	80	5

4.2.3. Impact Testing

Primary	Genable® Type &	% Graphene	Cracking	g begins: I	Height (cr	n) 1Kg We	eight		
Anti-	Addition Level in Wet	in Wet							
Corrosive	Primer	primer	10	20	30	40	50	60	70
Pigment A	None (Control)	0							
Pigment A	G enable® 1001 at 5%	0.50%							
Pigment A	G enable® 1201 at 10%	0.10%							
Pigment B	None (Control)	0							
Pigment B	G enable® 1001 at 5%	0.50%							
Pigment B	G enable® 1201 at 10%	0.10%							
Pigment C	None (Control)	0							
Pigment C	Genable® 1001 at 5%	0.50%							
Pigment C	Genable® 1201 at 10%	0.10%							

4.2.4. Taber Abrasion Testing

Primary		% Graphen	100 Cycles, 1Kg Weight, CS-10 Discs				
Anti-	Genable [®] Type & Addition	e in Wet	Initial Mass Final Mass Mass Loss Wear				
Corrosive	Level in Wet Primer	Primer	(g)	(g)	(g)	Rating	
Pigment A	None (Control)	0	68.1826	68.1543	28.3	283	
Pigment A	G enable [®] 1001 at 5%	0.50%	67.8742	67.842	32.2	322	
Pigment A	G enable® 1201 at 10%	0.10%	66.7089	66.6539	55	550	
Pigment B	None (Control)	0	68.0394	68.0097	29.7	297	
Pigment B	G enable [®] 1001 at 5%	0.50%	67.3551	67.3154	39.7	397	
Pigment B	G enable [®] 1201 at 10%	0.10%	67.1761	67.1399	36.2	362	
Pigment C	None (Control)	0	67.8543	67.8034	50.9	509	
Pigment C	Genable® 1001 at 5%	0.50%	67.2149	67.1692	45.7	457	
Pigment C	G enable [®] 1201 at 10%	0.10%	66.8288	66.7935	35.3	353	

5. Technical Comments

5.1. Assessing if Graphene can Enhance Anti-Corrosion Performance

The aim of the work described in this technical application note is to evaluate if graphene nanoplatelets in combination with environmentally friendly and non-zinc inhibitive pigments could enhance the corrosion protection performance of anti-corrosion primers which in turn could lead to a meaningful extension of coating life.

Given that some of the key anti-corrosion pigments such as chromates and phosphates incorporated into coating systems are coming under increasing environmental pressure to be removed or reduced then viable alternatives will be of interest to the Coatings Industry.

This work has demonstrated that graphene in combination with environmentally friendly inhibitive pigments can significantly enhance corrosion protection. Work has also shown they could be added into the primer, intermediate or top coating layer.

5.2. Performance

Genable® 1001 and Genable® 1201 have been shown to improve anti-corrosion performance in coating films which are free of defects both singularly and in combination with other anti-corrosive pigments.

Significant improvements are observed when graphene nanoplatelets are used in combination with zinc phosphate and other inhibitors, the corrosion observed at the scribe and across the face of the test panels show significant improvements over traditional anti-corrosive pigments alone (TAN Anti-Corrosion Coatings Part 1). Here we report on a long term series of trials where graphene nanoplatelets are combined in a hybrid manner with non-metallic inhibitors to generate an environmentally friendly solution to corrosion.

Compared to the blank (control) formulation, the inclusion of Genable® 1001 and Genable® 1201 with Type B Pigment provides a substantial improvement in anti-corrosion performance. After 3000 hours the **Genable® 1001** formulation continues to perform showing minimal signs of corrosion. The Genable® 1200 dispersion in combination with the Type A Pigment also provided a good level of performance up to 2000 hours. The anti-corrosive free formulation had completely failed after 500 hours, so this represents a six-fold and four-fold improvement in time to failure respectively. The formulation with the Type C pigment demonstrated good performance up to 3000 hours whereas the rest of the sample panels had generally failed completely between 1000 and 2000 hours. Anti-corrosion performance is highly dependent on specific coating formulation; the results seen in prototype may not necessarily be true in different formulations.

Mechanical testing was carried out after 7 days cure on the epoxy based coating to investigate whether graphene had an influence upon the mechanical properties such as flexibility, impact, abrasion and adhesion performance. The test results indicated some variance but the overall effect upon mechanical performance characteristics over the control formulations alone was small.

5.3. Formulating

The substantial programme of work conducted by AGM has led to the development of the Genable® 1000 and Genable® 1200 ranges. This work has been further developed with other inhibitor pigments to produce a hybrid anti-corrosion system. The starting point formulation outlined above is an example of how the Genable[®] graphene dispersions can be introduced directly into the resin formulation. The dispersions are typically introduced into the formulations at the letdown stage.

Technical Application Note: Anti-Corrosion Primers – Part 2 Version 2.1 – March 2021

6. Genable® Storage Stability

6.1. Epoxy

AGM graphene is supplied in dispersion format. 12 months stability testing has shown that dispersions in epoxy resins are stable to agglomeration. Data below for 5% A-GNP10 in liquid epoxy resin dispersion.

	12 months				
Syneresis	None				
Sedimentation	5mm soft sediment. Easily re-incorporated.				
Agglomeration	None				

	Dx (10)	Dx (50)	Dx (90)
Initial	0.83 µm	8.10 μm	31.0 µm
1 month	0.68 µm	7.65 μm	28.8 µm
12 months	0.68 µm	7.27 μm	29.2 µm

Store under ambient conditions for up to 12 months. Dispersion may show slight sedimentation during transportation or on storage. Customer may need to re-agitate by simply mechanically mixing thoroughly with spatula, palette knife or mechanical stirrer before use.

6.2. Water

Water borne products should be stored in covered, dry conditions and stored in the temperature range 4°C (40°F) and 35°C (95°F).

G*enable*[®] **1050** has a 3 month shelf life. If settling has occurred during storage simple mechanical mixing will re-disperse graphene sufficiently for testing of samples.

Genable® 1250 has a 6 month shelf life with minimal sedimentation expected.

6.3. Solvents

The **G**enable[®] **1000** series (A-GNP10 dispersed into standard solvents) have a 3 month shelf life. If settling has occurred during storage simple mechanical mixing will re-disperse graphene sufficiently for testing of samples.

When longer term storage testing of A-GNP10 in MEK was carried out to assess stability, some sedimentation was observed after 3 months. This can be recombined/reconstituted with mechanical agitation for ten to fifteen minutes by using an electric vortex mixer with a Florock vortex mixer blade for example.

For the **G***enable*[®] **1200** series sedimentation of the A-GNP35 graphene in the solvent is less likely but some pooling of the solvent may occur on the top surface of the sample. If pooling occurs then simple mechanical mixing prior to testing to re-disperse will suffice.

You will follow any instructions and all applicable guidelines, laws, regulations, government agency guidelines and best industry practice regarding the use, transport, security, and disposal of the products. All statements and technical information contained in this data sheet are given in good faith and are based on information believed to be reliable, but their accuracy and completeness are not guaranteed and no representation or warranty (express or implied) is given. Any statements and technical information do not constitute an offer to any person and do not form the basis of any contract. All products are sold subject to Applied Graphene Materials' standard terms and conditions of sale. The user will determine the suitability of the products for their intended use prior to purchase and will assume all risk and liability (to the fullest extent permitted under applicable law) in connection with that purchase and intended use. It is the responsibility of those wishing to sell items made from or using the products to information in this datasheet is under constant review and subject to ongoing modification, however, Applied Graphene Materials shall be under no obligation to notify the user of any modifications made.

Technical Application Note: Anti-Corrosion Primers – Part 2 Version 2.1 – March 2021