

TECHNICAL APPLICATION NOTE

Anti-Corrosion Primers: Part 3

Active Non-metallic Anti-Corrosion Additives

Contents

1.	Intr	oduction	3
2.	Inh	ibitors	3
3.	Ant	i-Corrosion Evaluation of Graphene and Non-Metallic Pigment Dispersion	3
3	8.1.	Primer Starting Point Fomulation Based on Genable® 3001	4
3	8.2.	Manufacturing Guidelines for Anti-Corrosion Coating	5
3	8.3.	Test Panel Preparation	5
3	8.4.	Salt Spray Testing ASTM G-85-94 Prohesion	5
3	8.5.	Corrosion Rating Test Results (1000, 2000, 3000, 4000 & 5000 Hours)	7
3	8.6.	Mechanical Testing (7 Day Cure): Adhesion, Flexibility, Impact & Abrasion	7
3	8.7.	Performance	8
4.	Ger	nable® Storage Stability	8

1. Introduction

Applied Graphene Materials UK Ltd (AGM) manufacture graphene nanoplatelets using a proprietary and patented process developed at Durham University in the UK.

Applied Graphene Materials UK Ltd have developed significant in-house knowledge on the behaviour and performance of graphene modified coating formulations. These guidance notes are designed to provide formulation insights to assist development scientists achieve a technical appreciation of this novel technology.

The addition of graphene alone by a **G**enable[®] dispersion into coating formulations has demonstrated excellent barrier properties leading to a reduction in water vapour transmission rates (WVTR). This reduction in WVTR significantly enhances the anti-corrosion performance of an epoxy coating. (This improvement is discussed in more detail in AGM's Technical Guidance note on Anti-Corrosion Primers: Part 1).

This technical application note describes in further detail how the addition of a **Genable® 3000** series dispersion to a base paint can lead to significant improvements in the anti-corrosion performance of a primer and the potential benefits this can provide for a customer.

2. Inhibitors

An ideal inhibitive coating should form a barrier against water and detrimental ions whilst simultaneously releasing a sufficient quantity of inhibitor. These two requirements are antagonistic in principle and require a balance in the pigment with a dependency on the barrier properties of the coating.

In previous work (Technical Application: Anti-Corrosion Primers: Part 2) a range of inhibitors were used. Further developments from this work have led to a novel anti-corrosive pigment providing excellent anticorrosion performance.

Inhibitive coatings are generally applied in the form of primers and are used where the substrate is exposed to atmospheric corrosion and not where the substrate is immersed in water or soil.

The selection of an active pigment has been coming under ever increasing environmental and regulatory pressures leading manufacturers to remove and/or reduce the amount of metal salts used in coating systems.

3. Anti-Corrosion Evaluation of Graphene and Non-Metallic Pigment Dispersion

G*enable*[®] **3001** (an activated graphene modified pigment dispersion) has been formulated into epoxy based primer system for typical C3 category performance based on ISO 12944. It has been evaluated using the output from the tests listed below.

Testing carried out

Accelerated exposure:		ASTM G-85-94 Prohesion es: Evaluation of Degradation
		ISO 4628-2, 3, 8:2012
Mechanical Testing:	Flexibility Impact Abrasion	ISO 6860: 6860 ISO 6272-2:2004 ISO 7784
	Adhesion	ISO 4624

3.1. Primer Starting Point Fomulation Based on Genable® 3001

The primer was made up using the formulation below resulting in an 87% stoichiometry. It was cured over seven days at ambient room temperature.

		Part A	: Epoxy Base		
		Item	Raw material name		
				Control (Base Paint plus 8%	Base Paint plus Genable [®] 3001
			e items 1,2,3 ,4 and 5 and mix at peed (2000 rpm) for 10 minutes	Zinc Phosphate	
				%wt	%wt
		1	Epoxy Resin (EEW= 250g/eq.)	11.34	11.34
σ		2	Cymel U-216 resin	0.25	0.25
Charged		3	Anti-terra U	0.41	0.41
Cha		4	Xylene	7.84	7.84
		5	Tixogel MP	0.37	0.37
l			Gel is homogenous and free of Continue mixing if not.		
		(2000	ems 6 to 9. Mix at high speed rpm) for 15 minutes. Check grind icrons and add items 6.		
		6	Butanol	2.02	2.02
σ		7	Titanium dioxide	11.18	11.18
Grind]	8	Zinc Phosphate	8	0
		9	Blanc Fixe	37.47	43.47
			ems 11, 12 & 13. Mix at medium (1000rpm) for 15 minutes.		
L L		10	Genable [®] 3001 dispersion addition	0	11
Let Down		11	Epoxy Resin (EEW=250g/eq.)	14.28	4.27
Let	L	12	Xylene	7.84	7.84

Part B: Hardener

The epoxy to hardener mix ratio can be calculated for an appropriate hardener based upon the EEW and AHEW values. In this case an aliphatic amine hardener was used (e.g. Ancamine 2324)

рус	35	37
VOC (g/l)	320	309

3.2. Manufacturing Guidelines for Anti-Corrosion Coating

It is recommended that **G**enable[®] dispersions should be added at the let-down stage of the manufacturing process.

Impact on PVC: For guidance please contact Business Development on the included contact details.

3.3. Test Panel Preparation

Substrate	Cold Rolled Steel
Dimensions	152mm by 101mm
Preparation	Grit blasting to SA2-1/2 rolled by degreasing with acetone
Grit	Irregularly shaped chrome/nickel shot
Application	Spray application (gravity-fed gun 1.2 mm tip)
Coating Thickness	DFT 60-75 μm
Curing	7 Days at Room Temperature

3.4. Salt Spray Testing ASTM G-85-94 Prohesion

Primer Control (with 8% Zinc Phosphate) and **G**enable[®] **3001** test panels after 1000, 2000, 3000, 4000 & 5000 Hours of testing to ASTM G-85-94:

	Control (Primer Only) In-house primer + 8% Zinc Phosphate	In-house primer + Genable [®] 3001
1000 Hours		Pwezoo (12.1

2000 Hours	X	R-18200/123
3000 hours	X	Puezzo Jizs
4000 hours	X	
5000 hours	X	Fue 200 1125

3.5. Corrosion Rating Test Results (1000, 2000, 3000, 4000 & 5000 Hours)

Anti-Corrosion Pigment (wt/wt)	Prohesion salt spray exposure (hours)	Creep (mm)	Blistering (Qty)	Blister Size	Corrosion	Comments
Zinc Phosphate at 8%	1000	4	1	S3	Ri5	Failed, Corroded across whole face
Genable® 3001 at 11%	1000	1	0	SO	Ri2	Good
Genable® 3001 at 11%	2000	1	0	SO	Ri2	Good
Genable® 3001 at 11%	3000	1	0	SO	Ri2	Good
Genable® 3001 at 11%	4000	1	0	S0	Ri2	Good
Genable® 3001 at 11%	5000	1	0	SO	Ri2	Good

3.6. Mechanical Testing (7 Day Cure): Adhesion, Flexibility, Impact & Abrasion

Adhesion Testing

	Force (MPa)			Comment
Primary Anti-Corrosive	e Rating 1 Rating 2 A		Average	
Zinc Phosphate at 8%	2	2	2	50% Adhesive failure
Genable® 3001 at 11%	1.5	1.8	1.65	Cohesive failure

Conical Mandrel Testing

Primary Anti-Corrosive	Cracking	Elongation
Zinc Phosphate at 8%	4	21
Genable® 3001 at 11%	0	<35

Impact Testing

	Cracking begins: Height (cm) 1Kg Weight							
Primary Anti-Corrosive	10	20	30	40	50	60	70	
Zinc Phosphate at 8%	х	х						
Genable® 3001 at 11%	Х							

Taber Abrasion Testing

-

	100 Cycles, 1Kg Weight, CS-10 Discs					
Primary Anti-Corrosive	Initial Mass (g)	Final Mass (g)	Mass Loss (mg)	Wear Rating		
Zinc Phosphate at 8%	68.1826	68.1543	28.3	283		
Genable® 3001 at 11%	67.3551	67.3154	39.7	397		

3.7. Performance

The aim of the work described in this technical application note is to evaluate how active non-metallic anti-corrosion additives could enhance the corrosion protection performance of anti-corrosion primers which in turn could lead to a meaningful extension of coating life.

Given that some of the key anti-corrosion pigments such as chromates and phosphates incorporated into coating systems are coming under increasing environmental pressure to be removed or reduced then viable alternatives will be of interest to the Coatings Industry.

This work has demonstrated that the incorporation of the **G**enable[®] **3000** series in a primer can significantly enhance corrosion protection.

4. Genable® Storage Stability

AGM graphene is supplied in dispersion format. 12 months stability testing has shown that dispersions in epoxy resins are stable to agglomeration.

	12 months	
Syneresis	None	
Sedimentation	5mm soft sediment. Easily re-incorporated.	
Agglomeration	None	

	Dx (10)	Dx (50)	Dx (90)
Initial	0.83 μm	8.10 μm	31.0 µm
1 month	0.68 μm	7.65 µm	28.8 µm
12 months	0.68 μm	7.27 μm	29.2 µm

Store under ambient conditions for up to 12 months. Dispersion may show slight sedimentation during transportation or on storage. Customer may need to re-agitate by simply mechanically mixing thoroughly with spatula, palette knife or mechanical stirrer before use.

You will follow any instructions and all applicable guidelines, laws, regulations, government agency guidelines and best industry practice regarding the use, transport, security, and disposal of the products. All statements and technical information contained in this data sheet are given in good faith and are based on information believed to be reliable, but their accuracy and completeness are not guaranteed and no representation or warranty (express or implied) is given. Any statements and technical information do not constitute an offer to any person and do not form the basis of any contract. All products are sold subject to Applied Graphene Materials' standard terms and conditions of sale. The user will determine the suitability of the products for their intended use prior to purchase and will assume all risk and liability (to the fullest extent permitted under applicable law) in connection with that purchase and intended use. It is the responsibility of those wishing to sell items made from or using the products. The information in this datasheet is under constant review and subject to ongoing modification, however, Applied Graphene Materials shall be under no obligation to notify the use of any modifications made.